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This chapter focuses on evidence linking socio-economic status (SES) to “downstream” peripheral biology. Drawing
on the concept of allostatic load, we examine evidence linking lower SES with greater cumulative physiological toll
on multiple major biological regulatory systems over the life course. We begin by reviewing evidence linking lower
SES to poorer trajectories of aging in multiple, individual physiological systems, followed by evidence of the resulting
cumulative, overall burdens of physiological dysregulation seen among those of lower SES. The role of cumulative
physiological dysregulation in mediating SES gradients in morbidity and mortality is then examined. We conclude
with discussion of the question of interactions between SES (and other such environmental factors) and genetic
endowment, and their potential consequences for patterns of physiological activity—an area of research that appears
poised to contribute significantly to our understanding of how social conditions “get under the skin” to affect health
and aging.
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Introduction

Building on the previous chapter’s focus on socio-
economic status (SES) differences in central (brain)
aging and function, this chapter examines evidence
regarding SES impacts on “downstream” peripheral
biology. We discuss the brain-mediated influences of
SES on patterns of activity as well as aging of major
peripheral physiological regulatory systems, includ-
ing the autonomic nervous system, cardiovascular,
metabolic, and inflammatory processes, presenting
evidence for SES gradients in parameters of each
of these major systems. Drawing on the concept of
allostatic load (AL), we also examine the cumula-
tive impact of SES across these multiple biological
systems and parameters. Such a multisystems view
of the impact of SES on rates of aging of periph-
eral biology provides a different and complemen-
tary perspective to that of SES effects on individual
physiological systems. Although lower SES is nearly
always associated with poorer trajectories of physio-
logical aging when individual biological parameters

are examined, the gradients are generally relatively
modest while larger gradients are frequently evident
when examining “cumulative” measures, represent-
ing multisystems indices of physiological aging, sug-
gesting that lower SES is associated with more rapid
aging of all major systems. We review the growing
evidence for both the more modest SES gradients in
individual systems/parameters as well as the recent
literature focusing on cumulative indices of physi-
ological dysregulations across multiple systems. We
also examine the small, but growing, literature fo-
cused on testing the role of such cumulative phys-
iological dysregulation in mediating observed SES
gradients in risks for a range of diseases, disability,
and mortality.

We also provide a brief overview of the latest
work testing for interaction effects between SES (and
other such environmental factors) and genetic en-
dowment and their resulting impact on patterns of
physiological activity—an area of research that ap-
pears poised to contribute significantly to a more
substantive understanding of how social conditions
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“get under the skin” to affect health and aging over
the life-course. Above and beyond providing clearer
understanding of the physiological routes through
which SES impacts health and aging, research on
links between SES and peripheral biology can also
contribute to the development of more evidence-
based programs and policies to reduce current so-
cial inequalities. Information on peripheral biol-
ogy could be used, for example, as an intermediate
“outcome,” for tracking the more immediate, and
hopefully beneficial impacts of such policies and
programs.

Socioeconomic status gradients in
patterns of activity in major regulatory
systems

As the McEwen and Gianaros chapter outlines,
growing evidence points to significant SES differ-
ences in brain development and function, beginning
at the earliest stages of life and continuing across the
life-course. Such differences in brain development
and function impact, and indeed regulate, down-
stream peripheral biology through cortico-limbic
pathways, including known interconnections be-
tween structures such as the prefrontal cortex, hip-
pocampus and amygdala, and more downstream
regulation of the hypothalamic-pituitary-adrenal
(HPA) axis and sympathetic nervous system (SNS),
orchestrated in large part through the hypothala-
mus and adrenal gland.1–5 In the following sections,
we examine evidence linking SES to differences not
only in such downstream HPA and SNS activity
(e.g., circulating levels of cortisol, norepinephrine

(NE), and/or epinephrine) but also in additional
related regulatory systems reflecting cardiovascular,
metabolic, and inflammatory parameters.

Table 1 provides an overview of major biologi-
cal systems and their respective parameters that are
our focus in light of their known associations with
increased risks for major health outcomes.

The negative health consequences of high blood
pressure (particularly systolic) have been recog-
nized for decades, including higher death rates,
the onset of cardiovascular disease, and the loss
of both physical and cognitive functioning.6–9 Sev-
eral studies have also found that high resting heart
rate is associated with increased mortality risk (see
Ref. 10 for review). Metabolic parameters, includ-
ing higher total serum and LDL cholesterol, lower
HDL cholesterol, and higher relative weight, are
also recognized risk factors for poor health out-
comes including mortality, cardiovascular disease,
and functioning loss.7,11–14 Elevated glucose levels—
as indexed by fasting glucose or more integrated
assessments of glucose metabolism such as glycosy-
lated hemoglobin (HgA1c)—have also been related
to heart disease risk;15 to higher mortality;16 and
to poorer cognitive17–20 and physical function.8 It
is important to note that even modest elevations
in these biomarkers are associated with adverse out-
comes, even when they do not meet accepted thresh-
olds for clinical intervention.21,22

Dysregulations in HPA axis activity, particu-
larly chronically elevated cortisol, have been re-
lated to increased risks for range of health prob-
lems, including obesity,23 hypertension, diabetes

Table 1. Major biological regulatory systems

System Parameters commonly assessed

Cardiovascular Diastolic/systolic blood pressure

Heart rate/pulse

Metabolism Glucose, glycosylated hemoglobin

Insulin

Lipids (total, HDL, LDL cholesterol)

Relative weight (BMI, WHR)

Hypothalamic-pituitary-adrenal (HPA) axis Cortisol; dehydroepiandrosterone sulfate (DHEA-S)

Autonomic nervous system

Sympathetic nervous system (SNS) Norepinephrine, epinephrine

SNS/Parasympathetic balance Heart rate variability

Inflammation C-reactive protein, IL-6
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mellitus type 2, lipid imbalance, atherosclerosis,24–26

accelerated brain aging,27 hippocampal atrophy, and
cognitive impairment,28–31 loss of bone mineral
density,32–34 sarcopenia,35 and immune dysfunc-
tion.36 Similarly, more chronic elevations in SNS
activity can raise blood pressure and heart rate that
promotes atherosclerosis, and appears to be inde-
pendently associated with cancer mortality.37

Exposure to chronically elevated inflammation
processes has also been increasingly recognized as a
significant health risk with links to increased risks
for osteoporosis,38,39 cardiovascular disease,40–45

and cognitive decline.46–48

As reviewed in McEwen and Gianaros chap-
ter, these peripheral processes also have feedback
loops to the brain such that downstream physio-
logical activity frequently has significant impacts on
“brain health” as well. For example, dysregulation
of metabolism as in Type 2 diabetes has deleterious
effects on the brain.49 Elevated HPA and cardiovas-
cular parameters have also been linked to poor cog-
nitive functioning in many studies.29,31,49–54 Accu-
mulating evidence also indicates that inflammatory
processes in the body are associated with reduc-
tions in volume of a key brain structure, the hip-
pocampus55 as well as poor sleep56 (for additional
details see chapter by McEwen and Gianaros). From
our perspective, a significant and central feature of
these biological processes is the degree to which they
not only relate to major health risks but also exhibit
gradients by SES. A growing body of evidence docu-
ments consistent SES gradients for nearly all of these
biological risk parameters—with lower SES groups

exhibiting higher levels of risk. Much of the earli-
est work presented evidence for these SES gradients
in adults12,57 but more recent work has shown that
these same SES gradients are evident as early as the
first 5 years of life,58–60 as well as throughout child-
hood,59,61–65 early adolescence,66–68 and into early
adulthood.69–73 Figure 1A and B illustrate these gra-
dients, showing levels of glycosylated hemoglobin
(HgA1c)—an index of overall glucose metabolism
over the past 6–8 weeks74—by SES as indexed by
the poverty income ratio (PIR), an index of house-
hold income relative to the federally defined poverty
level.

As shown in Figure 1A, gradients in HgA1c lev-
els are seen even as early as ages 1–5, with those
from lower income (lower PIR) households show-
ing higher prevalence of elevated HgA1c levels com-
pared with children from higher income (higher
PIR) families; Figure 1B documents that these gra-
dients continue throughout adulthood as well. As
shown in Figure 2, similar SES gradients are seen
for a wide array of additional biological risk factors,
including blood pressure, total and HDL choles-
terol, and C-reactive protein (CRP) with lower
SES associated with a higher prevalence of “high
risk” values for all of these parameters—“high risk”
being defined based clinically accepted criteria.75–80

Indeed, a large body of evidence documents SES
gradients for nearly all major peripheral biological
parameters, including those reflecting HPA axis reg-
ulation,60,62,66,70,72,81–85 SNS activity,60,71,72,81,83,85

heart rate variability (an index of autonomic bal-
ance),60,86–88 resting blood pressure,61,66,69,83,89–92

Figure 1. (A) High glycodylated hemoglobin
∗

by Poverty Income Ration (PIR). SES gradients based on PIR in
relation to glucose regulation among children (i.e., ages 19 and under). (B) High glycosylated hemoglobin

∗
by PIR.

SES gradients based on PIR in relation to glucose regulation in adults (i.e., ages 20 and above)—NHANES III (1988–
1994).1 PIR reflects the ratio of respondents’ reported household income to the federally defined poverty level for
those living in the respondent’s area of residence and with a household size similar to the respondent’s.
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Figure 2. Education gradients in “percent with high risk
values” for components of allostatic load.

and reaction to challenge (see Ref. 93 for
review), lipids/metabolic risks,72,90,92,94–102 inflam-
mation,73,94,103–109 and relative weight and fat dis-
tribution patterns (i.e., body mass index, waist-hip
ratio).90,92,95,110 In addition to the foregoing evi-
dence linking individual SES to major biological
risk parameters, evidence also points to impacts
from more macro-level, neighborhood-level SES
(e.g., Refs. 111,112).

Cumulative biological “wear and tear” (that
is, allostatic load)

The concept of “allostatic load,” introduced in the
early 1990s by McEwen and Stellar,113 proposes a
multisystems view of the cumulative physiologic toll
that may be exacted on the body over the course of a
lifetime of efforts to adapt to life’s demands.113 The
concept of allostatic load is itself derived from Ster-
ling and Eyer’s114 concept of allostasis, meaning “sta-
bility through change”; allostasis refers to the phys-
iological imperative that “an organism must vary
parameters of its internal milieu and match them
appropriately to environmental demands” (p. 638).
This view of internal physiology emphasizes its con-
stant dynamism, stressing that healthy functioning
requires on-going adjustments of the internal phys-
iologic milieu, with physiologic systems exhibiting
fluctuating levels of activity as they respond and
adapt to environmental demands. Moreover, each
mediator involved in allostasis is part of a nonlinear
network in which each mediator has biphasic effects
on physiological outcomes and also has reciprocal
regulatory influences on other mediators.115

Allostasis thus emphases the idea of optimal op-
erating ranges of physiologic systems in contrast to
the earlier homeostatic idea of optimal set-points.
It also acknowledges that few homeostatic networks
are solely under local regulation but rather are im-
portantly regulated centrally by the brain (see also
McEwen and Gianaros chapter). As such, our per-
ceptions and cognitive-emotional responses to en-
vironmental stimuli can, and do, influence patterns
of physiological activity and reactivity as, for exam-
ple, when our blood pressure rises in anticipation of
standing.114

The concept of allostatic load derives from a
longer-term, cumulative view of the process of al-
lostasis and the consequences of dysregulation in
patterns of response to environmental demands
(i.e., responses that no longer operate within op-
timal ranges). The premise is that while relatively
short-term fluctuations in levels of physiologic ac-
tivity are necessary for the body to respond suc-
cessfully to stimuli (e.g., the fight or flight response
in the face of various types of danger), excessive
fluctuations either in terms of the extent, duration
or frequency (e.g., responding to perceived “danger”
everywhere) can result in wear and tear on the body’s
regulatory systems. This wear and tear is manifested
in progressive dysregulations in the system’s abil-
ity to maintain levels of system parameters within
“normal operating ranges” in terms of resting lev-
els (e.g., seated blood pressure or fasting glucose)
and dynamic patterns of response (e.g., extent and
duration of response). Allostatic load represents the
cumulative physiological toll (i.e., the extent of such
dysregulation) across multiple systems over time. It
reflects both a multisystem and life-span orienta-
tion, visualizing disease risks as resulting from the
individual’s cumulative exposure over time to the
“wear and tear” associated with elevations in physi-
ologic activity across the body’s multiple regulatory
systems.

The idea that cumulative levels of “stress” may
have deleterious effects on health and longevity
has long intrigued investigators, dating back to
early work on homeostasis116,117 and continuing
with the work of Selye118–120 and others121 on the
pathological consequences of excessive physiologic
activation. Much of this work has tended to focus
on the effects of stress and dysregulation in spe-
cific, individual biological parameters.122–127 The
concept of allostatic load proposes that biological
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risk can be more effectively conceptualized from a
more cumulative, multisystems view and that such a
concept can better contribute to our understanding
of health outcomes—a view that is consistent with
known multifactorial etiologies of most pathology.
In part, this view stems from the realization that
these individual mediators are coupled together in
nonlinear networks and cannot be independent of
each other.115

Selye himself wrote that “life is largely a process
of adaptation to the circumstances in which we ex-
ist..(and)..the secret of health and happiness lies in
successful adjustment to the ever-changing condi-
tions on this globe; the penalties of failure in this
great process of adaptation are disease and unhappi-
ness” (pp. xv–xvi,120). Allostatic load might then be
viewed as an index of the relative degree of “failure”
at a physiologic level—i.e., a marker of the cumu-
lative, physiologic costs of previous efforts to cope
with life’s slings and arrows. It is the price that the
body may ultimately pay for dysregulated patterns
of physiological response to adaptational demands
(e.g., patterns of under- or over-responding). As an
“historical” index of prior physiologic toll, allostatic
load also provides the background setting for cur-
rent and future patterns of physiological response
to stimuli and thereby contributes significantly to
health risks.

Allostatic load differs from more traditional con-
cepts of biological risk in two ways. The first is its
focus on “the sum total of physiological dysregu-
lation across systems”—a view closer to the reality
of known system interconnections than approaches
that focus on the role of one or another regula-
tory system. And, the second is its inclusion of rel-
atively more modest forms of dysregulation in the
accounting of biological risk. This view of biological
risk proposes that relatively modest dysregulation
(e.g., somewhat elevated BP and/or more frequent or
prolonged elevations in response to stimuli) when
cumulated across multiple systems may have sig-
nificant impacts on health risks, even if none of
the individual effects would be deemed either sta-
tistically or clinically “significant” in and of them-
selves. The sum of these effects is nonetheless hy-
pothesized to exert a cumulative wear and tear on
systems.

As a cumulative phenomenon, allostatic load is
postulated to develop over the life course, with in-
dividuals accumulating AL at different rates. Both

the initiation and progression of such dysregulation
is postulated to be driven by individual differences
in the frequency of exposure to real and perceived
challenges and differences in their patterns of phys-
iological responses to these challenges. Factors that
may influence characteristic patterns of reactivity
(i.e., maximum change from basal levels and du-
ration of the response) include such things as (1)
age (e.g., prolonged neuroendocrine responses at
older ages have been found in some studies124,128

though not all (see Epel et al., 2007129 for review),
as well as decreased vagal tone at rest,130 decreased
cardiovagal baroreflex sensitivity,131 and impaired
functional immune responses to challenges, such
as vaccination132); (2) genetic influences (e.g., cer-
tain polymorphisms being associated with greater
physiological dysregulation in the face of stressful
conditions133,134); (3) lifestyle/behavioral influences
(e.g., hyper-reactivity of HPA, SNS, blood pressure,
and glucose among the less physically fit and over-
weight individuals,135–141 and among those con-
suming greater sugar/glucose;142–144 smoking has
also been associated with increased acute HPA
and SNS reactivity145,146 but longer-term blunted
HPA responses to acute stress147 while alcohol con-
sumption has been associated with increased HPA
reactivity148,149 along with decreased blood pres-
sure and heart rate response to acute stress150);
(4) psychological influences (e.g., hyper-reactivity
of cardiovascular and HPA systems among those
with poorer self-esteem,151 poorer self-efficacy be-
liefs,152,153 more passive coping154, and greater hos-
tility or Type A personality attributes155–158); (5)
inter-personal/social influences (e.g., greater HPA,
SNS, and cardiovascular reactivity under conditions
of social isolation and social conflict;159–161); and (6)
chronic stressor experience (e.g., greater SNS reactiv-
ity and lower functional immune activity to acute
stressor experiences in those with a higher level of
background stress;162 although lower levels of en-
docrine and immune reactivity have also been ob-
served163).

Though supported by less empirical evidence, ad-
ditional factors likely to influence the frequency
of reactivity include: (1) environmental exposures
(e.g., neighborhoods where you live and work);
(2) individual differences in what is perceived as
“threatening.” Indeed, the latter is perhaps the most
uniquely “human” feature of our stress responses.
Specifically, the capacity of our brains to imagine
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scenarios (e.g., potential outcomes of situations)
contributes a special feature to human stress re-
sponses, so that in the extreme case, one could
experience prolonged stress responses solely due
to perceptions/beliefs regardless of the actual, ob-
jective presence of danger or stressors. Conversely,
some individuals may respond only minimally if
at all to what most would view as major life chal-
lenges. Indeed, such individual differences in the in-
terpretation of situations can result in dramatically
different patterns of response at all levels (cogni-
tive/emotional, behavioral, and physiological). Over
time, as a result of individual differences in exposure
to different situations and stimuli, and individual
differences in cognitive/emotional reactions to these
stimuli, population differences in allostatic load are
postulated to develop. Older individuals will gen-
erally have more cumulative load; but within any
given age group, there will be a range of allostatic
loads that reflect differences in prior exposures and
reactions to one’s life-time experiences.

Empirical efforts to operationalize
allostatic load
Though attracting considerable attention and en-
thusiasm from a theoretical/conceptual point of
view, the multifaceted nature of allostatic load
has proven to be difficult to operationalize in any
straightforward or accepted, “gold standard” way.
Despite continued work using various methodolo-
gies,164–169 debate continues regarding how best
to capture the multiple and inter-connected fea-
tures of AL,165,170 including questions regarding the
range and scope of physiological measurements that
should be included (e.g., which systems and which
aspects of these systems) as well as methods for sum-
marizing such information into one or more “cu-
mulative indices.” As highlighted in the Evans and
Kim chapter, these debates show remarkable paral-
lels to earlier debates on development of cumulative
indices of childhood psychosocial and environmen-
tal risk factors, including concerns about the use of
indices that “cumulate” effects of different systems
or domains into a single score (thereby obviating the
ability to ascertain the impact of individual compo-
nents) as well as concerns regarding the use of sim-
ple summative approaches that fail to account for
the potentially differential impact of different com-
ponents of risk (see Refs. 134,171 for overviews).
As Rutter and others have shown, however, simple

summative indices appear to capture the essential
cumulative nature of such childhood risk factors
and the cumulative number of such risks appears to
predict outcomes more strongly than specific risk
factors or combinations of such factors (see Refs.
134,172 for review). Other fields have also employed
similar approaches to capture the combined impacts
of multiple forms of child abuse173,174 and environ-
mental risks.175

Initial efforts to operationalize AL followed a sim-
ilar approach,176 using a straightforward summative
methodology. Such an approach also shares similar-
ities with other indices of cumulative biological risk
that combine information on multiple risk factors
into a single score, including the metabolic syn-
drome177,178 (which is calculated as a simple sum
with equal weighting for all contributing factors)
and Framingham Risk Score179 (which is calcu-
lated with differential weight for component items).
These latter cumulative scores—like their analogs
in the childhood psychosocial risk literature—have
been shown to predict outcomes better than their
individual components.179 Indeed, use of such cu-
mulative assessment is now recommended for clin-
ical decision-making related cardiovascular disease
risk management.80,180 Drawing on available data
from the MacArthur Study of Successful Aging181 for
an initial set of data on 10 biological parameters—
resting systolic and diastolic BP; waist-hip ratio; to-
tal and HDL cholesterol; glycosylated hemoglobin;
urinary free cortisol, NE, and epinephrine; de-
hydroepiandrosterone sulfate (DHEA-S), reflecting
four major regulatory processes (HPA, SNS, cardio-
vascular, and metabolic)—we constructed an initial
index of AL by simply summing the number of pa-
rameters for which the individual had a value that
placed them in the top quartile (or bottom quartile
for HDL cholesterol and DHEA-S) of that param-
eter’s distribution within the MacArthur cohort.176

It is important to note that this original set of 10
parameters was not meant to be comprehensive nor
was it offered as a fixed/standard measure of AL,
rather it was an initial attempt to operationalize
AL using available data. Indeed, subsequent work
from this study has been able to augment the panel
of AL components with additional information on
parameters of inflammation (CRP, interleukin-6
(IL-6))—the goal being to optimize our assess-
ment of overall AL by incorporating information re-
garding the multiple regulatory systems involved in
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allostatic “adaptive” processes. This “inclusive” ap-
proach to operationalizing AL contrasts with that
of many of the more traditional and targeted risk
indices such as those developed to predict risks for
cardiovascular disease where selection of a specific
set of component physiological parameters is based
on their known contribution to risks for the specific
outcome in question. Operationalization of AL, by
contrast, seeks to achieve an index that—as com-
prehensively as possible—reflects the overall total
cumulative burden of physiological dysregulations
in allostatic processes across as many regulatory sys-
tems as possible. Thus, the focus in terms of measur-
ing AL is on capturing a multisystems array of in-
formation regarding the multiple major regulatory
systems involved in adaptive “allostatic” processes
rather than prediction of one or another specific
outcome.

The choice of “top risk quartile” as our criterion
for counting a given parameter was based on two
considerations. First, this allowed for a common
definition of “higher risk” for all of the compo-
nents of our summary score; use of “clinically de-
fined higher risk” guidelines was not feasible as such
guidelines did not (and still do not) exist for many
of the constituent parameters (e.g., 12-h overnight
urinary free cortisol, NE, and epinephrine (EPI)).
Second, given the original design of the MacArthur
study (i.e., enrollment of a cohort of relatively high
functioning 70–79 years old), our chosen criteria
provided an assessment of which individuals within
this cohort exhibited relatively “higher risk” profiles
compared with their counterparts in the cohort. We
also elected not to define gender-specific definitions
as we would then be unable to compare men and
women in the cohort based on a common definition.

Using this simple count index, analyses of the
MacArthur Study data demonstrated that baseline
AL was associated with significantly increased risks
for a range of major outcomes, including risks
for mortality, incident and recurrent cardiovascu-
lar disease, cognitive and physical decline. These
associations were found both with respect to an
initial 2.5 year follow-up period176 as well as a
longer 7-year period,164 and the effects were found
to result from the contributions of multiple regula-
tory systems represented in the index,164 providing
support for the cumulative nature of the risks re-
flected in such a summary index of AL. Subsequent
work has shown that these associations are repli-

cated when a variety of alternative scoring methods
that incorporate more complex and detailed scor-
ing algorithms are used to create indices of AL, in-
cluding canonical correlation analyses,169 grade-of-
membership166,167,182 and recursive partitioning.168

The rationale for moving to these more complex
scoring systems is their ability to incorporate more
detailed information on specific values for the var-
ious component physiological parameters (rather
than simply “counting” whether or not one’s value
is above or below a defined threshold value). And, in
some cases (e.g., recursive partitioning), their abil-
ity to account for potential nonlinearities in risk
(i.e., interactions between component physiological
parameters). To date, however, evidence on their rel-
ative performance in predicting outcomes as com-
pared to simpler count indices remains sparse. Avail-
able comparative data suggest that more complex
scoring systems that incorporate greater informa-
tion are, as expected, more strongly related to out-
comes.166 (Seeman and Karlamangla unpublished
data) However, the “gains” in predictive ability ap-
pear to be relatively modest. For example, data from
the MacArthur Aging Study suggests that the orig-
inal simple count index captures a majority of the
relevant health risk information—e.g., correlations
with decline in cognitive and physical function of
0.12 and 0.30, respectively, for the count index as
compared with correlations of 0.17 and 0.39 based
on the canonical AL index (Karlamangla and See-
man, unpublished data). Though suggestive, such
comparative data remains sparse and the question
of how best to approach cumulative scoring of AL
remains a topic of significant interest and discus-
sion. More comparative work is clearly needed to
better evaluate the relative “gains” from more com-
plex scoring systems such as canonical correlations,
grade-of-membership, and recursive partitioning,
before any “best practice” guidelines can be offered
with respect to scoring of AL.

SES gradients in cumulative biological
“wear and tear” (that is, allostatic load)

Empirical research has also provided evidence of the
cumulative nature of AL across the life-course183 as
well as evidence supporting the hypothesis that the
added stresses and resource constraints associated
with lower SES are associated with faster accumu-
lation of AL (i.e., greater age-specific burdens of
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Figure 3. Total allostatic load by education. SES and
total allostatic load among adults—NHANES III (1988–
1994).

AL). Data from the MacArthur Study again pro-
vided the initial evidence to support this hypoth-
esis, documenting not only the hypothesized SES
differences but also the contribution of these SES-
associated differences in AL to explaining observed
SES gradients in mortality.85 Building on this ini-
tial evidence, Singer and Ryff184 demonstrated that
both adult and childhood SES contributed to ob-
served differences in AL for adults in their early
1960s.

Consistent with the hypothesis that lower SES
is associated with faster accumulation of AL (i.e.,
greater “wear-and-tear” on physiological regulatory
systems), SES related gradients emerge as early as the
first 5 years of life and persist throughout childhood,
adulthood, and older age.58,83,85,185–187 Analyses of
nationally representative U.S. data for adults aged 20
and over from the National Health & Nutrition Sur-
vey (NHANES) have also documented these same
SES gradients in AL188–190 and the faster age-specific
accumulation associated with poverty.191 Figure 3
illustrates both of these trends, showing SES gra-
dients in each of three adult age groupings as well
as the greater cumulative AL among those of lower
SES within each of these age groups. Although SES
gradients in accumulated AL narrow in the oldest
age group, consistent with the hypothesis that all
are susceptible to age-associated increases in AL, it
is important to note that higher SES older adults
exhibit levels of AL that are similar to levels experi-
enced in lower SES adults during middle-age. Also,
consistent with evidence linking cumulative expo-
sure to lower SES conditions to increased health risks
(see Cohen et al chapter), one of the few studies to
examine SES histories in relation to AL found that
greater exposure to lower SES (e.g., reporting low

SES as a high school student and as an older adult)
was associated with the highest levels of AL while
consistently high SES was associated with the lowest
levels of AL.184 Among those reporting changes in
SES, increases in SES from childhood to adulthood
were associated with levels of AL closer to the “con-
sistently high SES” group while downward mobility
was associated with levels closer to the “consistently
low SES” group.184

A much smaller AL literature speaks to the ques-
tion of whether and how much such cumulative pro-
files of biological risk actually mediate SES differen-
tials in health outcomes. Several published reports
provide evidence supporting the role of multiple
biological systems in mediating SES differentials in
mortality.12,57,85,174 Consistent with the basic con-
cept of AL (focusing on the known co-occurrence
of biological risks), examination of specific biologi-
cal parameters or regulatory systems/processes pro-
vides more modest evidence of mediation, with the
most extensive/complete mediation seen when the
broadest array of biological systems are taken into
account. Analyses from the MacArthur Study of Suc-
cessful Aging, for example, document that the total
AL index mediates some 35% of the education gra-
dient in mortality while none of its component items
or subscales accounts for anything close to this, with
most accounting for under 15%.85 Preliminary ev-
idence also suggests that links between SES and AL
are at least partially explained by SES-related gra-
dients in factors such as health behaviors85 but ad-
ditional work is needed to elucidate more fully the
ways in which SES contributes to the accumulation
of AL.

Future directions
To date, research on AL has largely focused on testing
of main effects of SES. However, a small but grow-
ing body of evidence suggests that future research
should consider potential moderating effects of SES
with respect to the impacts of other psychosocial
and/or environmental “stressors/stimuli” on physi-
ological parameters and accumulation of AL. Cur-
rent evidence, for example, suggests that lower SES
may synergize with other stressors, potentiating the
negative impact of “stressors” on accumulation of
AL.67,83,192,193 Availability of psychosocial resources
may also convey greater relative benefits in the con-
text of lower SES. For example, sense of control is
more strongly associated with better health among
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those of lower SES194 while presence of support-
ive social ties was strongly related to more positive
reports of psychological well-being in lower SES
groups.195 Though as yet not linked to biological
parameters, one might hypothesize that in addi-
tion to these better self-reports of health, those of
lower SES who enjoy such psychosocial resources
will be found to exhibit lower cumulative AL than
might otherwise be expected. Investigation of these
potentially important modifiers of overall SES ef-
fects on biology will be an important next steps in
understanding the multiple and complex pathways
through which SES affects peripheral biology and
ultimately morbidity and mortality.

The question of gene-by-environment interac-
tions is another rapidly developing area of research
where important new findings are likely in com-
ing years. To date, a small but growing body of
evidence points to significant interactions between
genetic endowment and environmental conditions,
with different genetic profiles rendering individu-
als more or less responsive to environmental con-
ditions.134 Significantly, these interactions appear
to be a persistent feature across the life-course.
Adverse early childhood conditions, for example,
have been found to increase the genetic contribu-
tion to patterns of morning cortisol rise196 as well
as cortisol reactivity to an unfamiliar situation197

with MZ twins showing increased concordance as
compared with DZ twins. Adverse early childhood
conditions have also been shown to exacerbate the
genetic liability of a polymorphism in the 5-HTT
serotonin transporter gene, resulting in heightened
risks for depression.133,198 Poorer childhood condi-
tions have also been associated with differences in
neural responses to negative emotional stimuli199

as well as differences in physiological reactivity to
challenge in college-aged students.84 At older ages,
reported loneliness, a marker of impoverished so-
cial conditions, has been shown to synergize with
transcriptional control pathways resulting in over-
expression of gene bearing pro-inflammatory Nf-
�B/Rel transcription factors and under-expression
of genes bearing antiinflammatory glucocorticoid
response elements.200

A third direction for future work is to more fully
evaluate the role of biological processes in mediat-
ing SES links to health. Here, it will be important to
balance our interest in understanding specific bio-
logical pathways with the reality that these pathways

are multiple and interacting. Consequentially, a fo-
cus on one or another pathway, while illuminating
with respect to that pathway’s individual role, will
not provide the needed level of understanding as
to how SES “gets under the skin” to impact ma-
jor health outcomes. As the data reviewed above
clearly highlight, SES gets under the skin in multi-
ple inter-related ways as a function of its multiple
influences on our brain’s cognitive-emotional pro-
cesses and their related peripheral biological conse-
quences. It is the cumulative total of these biological
effects that likely accounts for the broad and con-
sistent gradients seen for SES with multiple health
outcomes. Only through a more comprehensively
multisystems approach to modeling biological me-
diation of SES effects on health can we hope to reach
a true picture of these processes. Work on one such
multisystems concept—allostatic load—has already
highlighted the added value of a multi-systems view
of the biological pathways mediating SES influences
on health, showing that a more comprehensive as-
sessment of biological risks associated with SES (i.e.,
our index of AL) does the best job of explaining ob-
served SES gradients in mortality risk.85 Though a
gold standard approach to developing such cumu-
lative biological indices has yet to be determined,
evidence to date clearly points to the value of finding
ways to evaluate the multiple, cumulative impacts
of SES on our physiology if we are to gain a true
understanding of how the consistent and persistent
SES gradients in nearly all health outcomes come to
be—and have any hope of altering these SES-related
health disparities.

Policy
Evidence linking lower SES conditions to
greater/faster cumulative dysregulation in nearly
all major biological systems provides clear evi-
dence of the health toll such socio-economic con-
ditions exact. Such evidence underscores the need
for broader, societal level interventions to reduce
health disparities associated with socio-economic
disparities. Importantly, testing the effectiveness
of any such interventions must include relatively
shorter-term outcomes that can provide early ev-
idence that the policy or program in question is
having desired impacts. Peripheral biological pa-
rameters represent a potentially valuable category
of such “intermediate” or short-term outcomes.
Because such parameters are known risk factors
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for major disease outcomes but have shorter time
horizons than do more downstream disease out-
comes in terms of their responsiveness to chang-
ing conditions, such parameters might be used as
a more immediate outcome to track and evalu-
ate the effects of policies or programs designed
to reduce health disparities. Importantly, efforts to
use biological parameters as “intermediate” out-
comes should avoid a narrow focus on one or an-
other biological parameter or system and incorpo-
rate assessments of the multiple biological systems
likely to be positively impacted by these interven-
tions. Evidence of positive trends in peripheral bi-
ological risk profiles (reflecting positive trends in
multiple parameters/systems) would hopefully sup-
port the maintenance of such a policy/program so
that longer-term disease outcomes would ultimately
be seen to be affected as well. For example, shift
work201 and short-turn around time for air crews
on trans-meridianal flights202 have health and cog-
nitive effects that could be ameliorated by work
policies. Indeed, one could argue that current ef-
forts to evaluate many programs targeted at reduc-
ing health disparities by relying only on evidence
for changes in disease outcomes (and frequently
failing to see such changes in what are generally
relatively short time horizons), may have failed to
identify what are actually effective programs by us-
ing outcomes with time horizons that are not ap-
propriately matched to evaluation periods. With
their likely shorter time horizon, peripheral biolog-
ical profiles would appear to be good candidates for
such shorter-term evaluations—providing early ev-
idence of the impact of a program or policy on risk
profiles that are known to predict longer-term dis-
ease risks. Evidence that a policy/program appears
to be generating positive trends in peripheral bio-
logical parameters would hopefully allow for the
continuation of such a policy/program for suffi-
cient time to see impacts on longer-term disease
outcomes.
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